horror/thirdparty/ode-0.16.5/tests/joints/piston.cpp
2024-06-10 12:48:14 +03:00

1457 lines
46 KiB
C++

/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
//234567890123456789012345678901234567890123456789012345678901234567890123456789
// 1 2 3 4 5 6 7
////////////////////////////////////////////////////////////////////////////////
// This file creates unit tests for some of the functions found in:
// ode/src/joinst/piston.cpp
//
//
////////////////////////////////////////////////////////////////////////////////
#include <UnitTest++.h>
#include <ode/ode.h>
#include "../../ode/src/config.h"
#include "../../ode/src/joints/piston.h"
SUITE (TestdxJointPiston)
{
// The 2 bodies are positioned at (0, 0, 0) with no rotation
// The joint is a Piston Joint
// Axis is along the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X
{
Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreatePiston (wId, 0);
joint = (dxJointPiston*) jId;
dJointAttach (jId, bId1, bId2);
dJointSetPistonAxis (jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dBodyID bId2;
dJointID jId;
dxJointPiston* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X::axis =
{
1, 0, 0
};
const dReal Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X::offset = REAL (3.1);
// Move 1st body offset unit in the X direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonAxisOffset_B1_3Unit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, offset, 0, 0);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
offset*axis[0],offset*axis[1],offset*axis[2]);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
// Only here to test a deprecated warning
#if 0 // the deprecated warning is not a functional part of the API, no need to test it.
dJointSetPistonAxisDelta (jId, 1, 0, 0, 0, 0, 0);
#endif
}
// Move 1st body offset unit in the opposite X direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
//
// Start with a Offset of -offset unit
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonAxisOffset_B1_Minus_3Unit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, -offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
-offset*axis[0],-offset*axis[1],-offset*axis[2]);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Move 2nd body offset unit in the X direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonAxisOffset_B2_3Unit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
-offset*axis[0],-offset*axis[1],-offset*axis[2]);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Move 2nd body offset unit in the opposite X direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
//
// Start with a Offset of -offset unit
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonAxisOffset_B2_Minus_3Unit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, -offset, 0, 0);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
offset*axis[0],offset*axis[1],offset*axis[2]);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// The 2 bodies are positioned at (0, 0, 0) with no rotation
// The joint is a Piston Joint
// Axis is the opposite of the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X
{
Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreatePiston (wId, 0);
joint = (dxJointPiston*) jId;
dJointAttach (jId, bId1, bId2);
dJointSetPistonAxis (jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dBodyID bId2;
dJointID jId;
dxJointPiston* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X::axis =
{
-1, 0, 0
};
const dReal Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X::offset = REAL (3.1);
// Move 1st body offset unit in the X direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonAxisOffset_B1_3Unit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
-offset*axis[0],-offset*axis[1],-offset*axis[2]);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Move 1st body offset unit in the opposite X direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonAxisOffset_B1_Minus_3Unit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, -offset, 0, 0);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
offset*axis[0],offset*axis[1],offset*axis[2]);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Move 2nd body offset unit in the X direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonAxisOffset_B2_3Unit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, offset, 0, 0);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
offset*axis[0],offset*axis[1],offset*axis[2]);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Move 2nd body offset unit in the opposite X direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
//
// Start with a Offset of -offset unit
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonAxisOffset_B2_Minus_3Unit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, -offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
-offset*axis[0],-offset*axis[1],-offset*axis[2]);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Only body 1
// The body are positioned at (0, 0, 0) with no rotation
// The joint is a Piston Joint
// Axis is along the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointPiston_B1_At_Zero_Axis_Along_X
{
Fixture_dxJointPiston_B1_At_Zero_Axis_Along_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
jId = dJointCreatePiston (wId, 0);
joint = (dxJointPiston*) jId;
dJointAttach (jId, bId1, NULL);
dJointSetPistonAxis (jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointPiston_B1_At_Zero_Axis_Along_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dJointID jId;
dxJointPiston* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointPiston_B1_At_Zero_Axis_Along_X::axis =
{
1, 0, 0
};
const dReal Fixture_dxJointPiston_B1_At_Zero_Axis_Along_X::offset = REAL (3.1);
// Move 1st body offset unit in the X direction
//
// X-------> X---------> Axis -->
// B1 => B1
//
// Start with a Offset of offset unit
//
// X-------> X---------> Axis -->
// B1 => B1
TEST_FIXTURE (Fixture_dxJointPiston_B1_At_Zero_Axis_Along_X,
test_dJointSetPistonAxisOffset_B1_OffsetUnit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, offset, 0, 0);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
offset*axis[0],offset*axis[1],offset*axis[2]);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Move 1st body offset unit in the opposite X direction
//
// X-------> X---------> Axis -->
// B1 => B1
//
// Start with a Offset of -offset unit
//
// X-------> X---------> Axis -->
// B1 => B1
TEST_FIXTURE (Fixture_dxJointPiston_B1_At_Zero_Axis_Along_X,
test_dJointSetPistonAxisOffset_B1_Minus_OffsetUnit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, -offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
-offset*axis[0],-offset*axis[1],-offset*axis[2]);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Only body 1
// The body are positioned at (0, 0, 0) with no rotation
// The joint is a Piston Joint
// Axis is in the oppsite X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointPiston_B1_At_Zero_Axis_Inverse_of_X
{
Fixture_dxJointPiston_B1_At_Zero_Axis_Inverse_of_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
jId = dJointCreatePiston (wId, 0);
joint = (dxJointPiston*) jId;
dJointAttach (jId, bId1, NULL);
dJointSetPistonAxis (jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointPiston_B1_At_Zero_Axis_Inverse_of_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dJointID jId;
dxJointPiston* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointPiston_B1_At_Zero_Axis_Inverse_of_X::axis =
{
-1, 0, 0
};
const dReal Fixture_dxJointPiston_B1_At_Zero_Axis_Inverse_of_X::offset = REAL (3.1);
// Move 1st body offset unit in the X direction
//
// X-------> X---------> <--- Axis
// B1 => B1
//
// Start with a Offset of offset unit
//
// X-------> X---------> <--- Axis
// B1 => B1
TEST_FIXTURE (Fixture_dxJointPiston_B1_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonAxisOffset_B1_OffsetUnit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
-offset*axis[0],-offset*axis[1],-offset*axis[2]);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Move 1st body offset unit in the opposite X direction
//
// X-------> X---------> <--- Axis
// B1 => B1
//
// Start with a Offset of -offset unit
//
// X-------> X---------> <--- Axis
// B1 => B1
TEST_FIXTURE (Fixture_dxJointPiston_B1_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonAxisOffset_B1_Minus_OffsetUnit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, -offset, 0, 0);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
offset*axis[0],offset*axis[1],offset*axis[2]);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId1, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Only body 2
// The body are positioned at (0, 0, 0) with no rotation
// The joint is a Piston Joint
// Axis is along the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointPiston_B2_At_Zero_Axis_Along_X
{
Fixture_dxJointPiston_B2_At_Zero_Axis_Along_X()
{
wId = dWorldCreate();
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreatePiston (wId, 0);
joint = (dxJointPiston*) jId;
dJointAttach (jId, NULL, bId2);
dJointSetPistonAxis (jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointPiston_B2_At_Zero_Axis_Along_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId2;
dJointID jId;
dxJointPiston* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointPiston_B2_At_Zero_Axis_Along_X::axis =
{
1, 0, 0
};
const dReal Fixture_dxJointPiston_B2_At_Zero_Axis_Along_X::offset = REAL (3.1);
// Move 2nd body offset unit in the X direction
//
// X-------> X---------> Axis -->
// B2 => B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> Axis -->
// B2 => B2
TEST_FIXTURE (Fixture_dxJointPiston_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonAxisOffset_B2_OffsetUnit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
-offset*axis[0],-offset*axis[1],-offset*axis[2]);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Move 2nd body offset unit in the opposite X direction
//
// X-------> X---------> Axis -->
// B2 => B2
//
// Start with a Offset of -offset unit
//
// X-------> X---------> Axis -->
// B2 => B2
TEST_FIXTURE (Fixture_dxJointPiston_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonAxisOffset_B2_Minus_OffsetUnit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, -offset, 0, 0);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
offset*axis[0],offset*axis[1],offset*axis[2]);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// Only body 2
// The body are positioned at (0, 0, 0) with no rotation
// The joint is a Piston Joint
// Axis is in the opposite X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointPiston_B2_At_Zero_Axis_Inverse_of_X
{
Fixture_dxJointPiston_B2_At_Zero_Axis_Inverse_of_X()
{
wId = dWorldCreate();
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreatePiston (wId, 0);
joint = (dxJointPiston*) jId;
dJointAttach (jId, NULL, bId2);
dJointSetPistonAxis (jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointPiston_B2_At_Zero_Axis_Inverse_of_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId2;
dJointID jId;
dxJointPiston* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointPiston_B2_At_Zero_Axis_Inverse_of_X::axis =
{
-1, 0, 0
};
const dReal Fixture_dxJointPiston_B2_At_Zero_Axis_Inverse_of_X::offset = REAL (3.1);
// Move 2nd body offset unit in the X direction
//
// X-------> X---------> <--- Axis
// B2 => B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> <--- Axis
// B2 => B2
TEST_FIXTURE (Fixture_dxJointPiston_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonAxisOffset_B2_OffsetUnit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, offset, 0, 0);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
offset*axis[0],offset*axis[1],offset*axis[2]);
CHECK_CLOSE (offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
#if 0 // another deprecated warning test?
dJointSetPistonAxisDelta (jId, 1, 0, 0, 0, 0, 0);
#endif
}
// Move 1st body offset unit in the opposite X direction
//
// X-------> X---------> <--- Axis
// B2 => B2
//
// Start with a Offset of -offset unit
//
// X-------> X---------> <--- Axis
// B2 => B2
TEST_FIXTURE (Fixture_dxJointPiston_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonAxisOffset_B2_Minus_OffsetUnit)
{
dJointSetPistonAnchor (jId, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, -offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dJointSetPistonAnchorOffset (jId, 0, 0, 0,
-offset*axis[0],-offset*axis[1],-offset*axis[2]);
CHECK_CLOSE (-offset, dJointGetPistonPosition (jId), 1e-4);
dBodySetPosition (bId2, 0, 0, 0);
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
}
// ==========================================================================
// Test Position Rate
// ==========================================================================
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> Axis -->
// B1 F-> => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonPositionRate_Force_Along_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId1, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> Axis -->
// B1 <-F => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonPositionRate_Force_Inverse_of_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId1, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> <-- Axis
// B1 F-> => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonPositionRate_Force_Inverse_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId1, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> <-- Axis
// B1 <-F => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonPositionRate_Force_Along_of_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId1, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 F-> B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonPositionRate_Force_Along_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId2, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 <-F B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonPositionRate_Force_Inverse_of_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId2, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 F-> B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonPositionRate_Force_Inverse_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId2, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 <-F B2
TEST_FIXTURE (Fixture_dxJointPiston_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonPositionRate_Force_Along_of_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId2, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> Axis -->
// B1 F-> => B1
TEST_FIXTURE (Fixture_dxJointPiston_B1_At_Zero_Axis_Along_X,
test_dJointSetPistonPositionRate_Force_Along_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId1, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> Axis -->
// B1 <-F => B1
TEST_FIXTURE (Fixture_dxJointPiston_B1_At_Zero_Axis_Along_X,
test_dJointSetPistonPositionRate_Force_Inverse_of_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId1, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> <-- Axis
// B1 F-> => B1
TEST_FIXTURE (Fixture_dxJointPiston_B1_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonPositionRate_Force_Inverse_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId1, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> <-- Axis
// B1 <-F => B1
TEST_FIXTURE (Fixture_dxJointPiston_B1_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonPositionRate_Force_Along_of_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId1, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on body 2 in the X direction that also is the axis direction
//
// X-------> X---------> Axis -->
// B2 F-> B2
TEST_FIXTURE (Fixture_dxJointPiston_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonPositionRate_Force_Along_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId2, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on body 2 in the inverse X direction
//
// X-------> X---------> Axis -->
// B2 <-F B2
TEST_FIXTURE (Fixture_dxJointPiston_B2_At_Zero_Axis_Along_X,
test_dJointSetPistonPositionRate_Force_Inverse_of_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId2, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on body 2 in the X direction that also is the axis direction
//
// X-------> X---------> <-- Axis
// B2 F-> B2
TEST_FIXTURE (Fixture_dxJointPiston_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonPositionRate_Force_Inverse_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId2, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Apply force on body 2 in the inverse X direction
//
// X-------> X---------> <-- Axis
// B2 <-F B2
TEST_FIXTURE (Fixture_dxJointPiston_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetPistonPositionRate_Force_Along_of_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetPistonPosition (jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetPistonPositionRate (jId), 1e-4);
dBodyAddForce (bId2, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetPistonPositionRate (jId), 1e-4);
}
// Create 2 bodies attached by a Piston joint
// Axis is along the X axis (Default value
// Anchor at (0, 0, 0) (Default value)
//
// ^Y
// |
// * Body2
// |
// |
// Body1 |
// * Z-------->
struct dxJointPiston_Test_Initialization
{
dxJointPiston_Test_Initialization()
{
wId = dWorldCreate();
// Remove gravity to have the only force be the force of the joint
dWorldSetGravity(wId, 0,0,0);
for (int j=0; j<2; ++j)
{
bId[j][0] = dBodyCreate (wId);
dBodySetPosition (bId[j][0], -1, -2, -3);
bId[j][1] = dBodyCreate (wId);
dBodySetPosition (bId[j][1], 11, 22, 33);
dMatrix3 R;
dVector3 axis; // Random axis
axis[0] = REAL(0.53);
axis[1] = -REAL(0.71);
axis[2] = REAL(0.43);
dNormalize3(axis);
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2],
REAL(0.47123)); // 27deg
dBodySetRotation (bId[j][0], R);
axis[0] = REAL(1.2);
axis[1] = REAL(0.87);
axis[2] = -REAL(0.33);
dNormalize3(axis);
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2],
REAL(0.47123)); // 27deg
dBodySetRotation (bId[j][1], R);
jId[j] = dJointCreatePiston (wId, 0);
dJointAttach (jId[j], bId[j][0], bId[j][1]);
}
}
~dxJointPiston_Test_Initialization()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId[2][2];
dJointID jId[2];
};
// Test if setting a Piston with its default values
// will behave the same as a default Piston joint
TEST_FIXTURE (dxJointPiston_Test_Initialization,
test_Piston_Initialization)
{
using namespace std;
dVector3 axis;
dJointGetPistonAxis(jId[1], axis);
dJointSetPistonAxis(jId[1], axis[0], axis[1], axis[2]);
dVector3 anchor;
dJointGetPistonAnchor(jId[1], anchor);
dJointSetPistonAnchor(jId[1], anchor[0], anchor[1], anchor[2]);
for (int b=0; b<2; ++b)
{
// Compare body b of the first joint with its equivalent on the
// second joint
const dReal *qA = dBodyGetQuaternion(bId[0][b]);
const dReal *qB = dBodyGetQuaternion(bId[1][b]);
CHECK_CLOSE (qA[0], qB[0], 1e-6);
CHECK_CLOSE (qA[1], qB[1], 1e-6);
CHECK_CLOSE (qA[2], qB[2], 1e-6);
CHECK_CLOSE (qA[3], qB[3], 1e-6);
}
dWorldStep (wId,0.5);
dWorldStep (wId,0.5);
dWorldStep (wId,0.5);
dWorldStep (wId,0.5);
for (int b=0; b<2; ++b)
{
// Compare body b of the first joint with its equivalent on the
// second joint
const dReal *qA = dBodyGetQuaternion(bId[0][b]);
const dReal *qB = dBodyGetQuaternion(bId[1][b]);
CHECK_CLOSE (qA[0], qB[0], 1e-6);
CHECK_CLOSE (qA[1], qB[1], 1e-6);
CHECK_CLOSE (qA[2], qB[2], 1e-6);
CHECK_CLOSE (qA[3], qB[3], 1e-6);
const dReal *posA = dBodyGetPosition(bId[0][b]);
const dReal *posB = dBodyGetPosition(bId[1][b]);
CHECK_CLOSE (posA[0], posB[0], 1e-6);
CHECK_CLOSE (posA[1], posB[1], 1e-6);
CHECK_CLOSE (posA[2], posB[2], 1e-6);
CHECK_CLOSE (posA[3], posB[3], 1e-6);
}
}
// Compare only one body to 2 bodies with one fixed.
//
// The body are positioned at (0, 0, 0) with no rotation
// The joint is a Piston Joint
// Axis is along the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointPiston_Compare_Body_At_Zero_Axis_Along_X
{
Fixture_dxJointPiston_Compare_Body_At_Zero_Axis_Along_X()
{
wId = dWorldCreate();
bId1_12 = dBodyCreate (wId);
dBodySetPosition (bId1_12, 0, 0, 0);
bId2_12 = dBodyCreate (wId);
dBodySetPosition (bId2_12, 0, 0, 0);
// The force will be added in the function since it is not
// always on the same body
jId_12 = dJointCreatePiston (wId, 0);
dJointAttach(jId_12, bId1_12, bId2_12);
fixed = dJointCreateFixed (wId, 0);
bId = dBodyCreate (wId);
dBodySetPosition (bId, 0, 0, 0);
dBodyAddForce (bId, 4, 0, 0);
jId = dJointCreatePiston (wId, 0);
}
~Fixture_dxJointPiston_Compare_Body_At_Zero_Axis_Along_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1_12;
dBodyID bId2_12;
dJointID jId_12; // Joint with 2 bodies
dJointID fixed;
dBodyID bId;
dJointID jId; // Joint with one body
};
// This test compares the result of a slider with 2 bodies where body 2 is
// fixed to the world to a slider with only one body at position 1.
//
// Test the limits [-1, 0.25] when only one body at attached to the joint
// using dJointAttach(jId, bId, 0);
//
TEST_FIXTURE(Fixture_dxJointPiston_Compare_Body_At_Zero_Axis_Along_X,
test_Limit_minus1_025_One_Body_on_left)
{
dBodyAddForce (bId1_12, 4, 0, 0);
dJointAttach(jId_12, bId1_12, bId2_12);
dJointSetPistonParam(jId_12, dParamLoStop, -1);
dJointSetPistonParam(jId_12, dParamHiStop, 0.25);
dJointAttach(fixed, 0, bId2_12);
dJointSetFixed(fixed);
dJointAttach(jId, bId, 0);
dJointSetPistonParam(jId, dParamLoStop, -1);
dJointSetPistonParam(jId, dParamHiStop, 0.25);
for (int i=0; i<50; ++i)
dWorldStep(wId, 1.0);
const dReal *pos1_12 = dBodyGetPosition(bId1_12);
const dReal *pos = dBodyGetPosition(bId);
CHECK_CLOSE (pos1_12[0], pos[0], 1e-2);
CHECK_CLOSE (pos1_12[1], pos[1], 1e-2);
CHECK_CLOSE (pos1_12[2], pos[2], 1e-2);
const dReal *q1_12 = dBodyGetQuaternion(bId1_12);
const dReal *q = dBodyGetQuaternion(bId);
CHECK_CLOSE (q1_12[0], q[0], 1e-4);
CHECK_CLOSE (q1_12[1], q[1], 1e-4);
CHECK_CLOSE (q1_12[2], q[2], 1e-4);
CHECK_CLOSE (q1_12[3], q[3], 1e-4);
}
// This test compares the result of a slider with 2 bodies where body 1 is
// fixed to the world to a slider with only one body at position 2.
//
// Test the limits [-1, 0.25] when only one body is attached to the joint
// using dJointAttach(jId, 0, bId);
//
TEST_FIXTURE(Fixture_dxJointPiston_Compare_Body_At_Zero_Axis_Along_X,
test_Limit_minus1_025_One_Body_on_right)
{
dBodyAddForce (bId2_12, 4, 0, 0);
dJointAttach(jId_12, bId1_12, bId2_12);
dJointSetPistonParam(jId_12, dParamLoStop, -1);
dJointSetPistonParam(jId_12, dParamHiStop, 0.25);
dJointAttach(fixed, bId1_12, 0);
dJointSetFixed(fixed);
dJointAttach(jId, 0, bId);
dJointSetPistonParam(jId, dParamLoStop, -1);
dJointSetPistonParam(jId, dParamHiStop, 0.25);
for (int i=0; i<50; ++i)
dWorldStep(wId, 1.0);
const dReal *pos2_12 = dBodyGetPosition(bId2_12);
const dReal *pos = dBodyGetPosition(bId);
CHECK_CLOSE (pos2_12[0], pos[0], 1e-2);
CHECK_CLOSE (pos2_12[1], pos[1], 1e-2);
CHECK_CLOSE (pos2_12[2], pos[2], 1e-2);
const dReal *q2_12 = dBodyGetQuaternion(bId2_12);
const dReal *q = dBodyGetQuaternion(bId);
CHECK_CLOSE (q2_12[0], q[0], 1e-4);
CHECK_CLOSE (q2_12[1], q[1], 1e-4);
CHECK_CLOSE (q2_12[2], q[2], 1e-4);
CHECK_CLOSE (q2_12[3], q[3], 1e-4);
}
// This test compares the result of a slider with 2 bodies where body 2 is
// fixed to the world to a slider with only one body at position 1.
//
// Test the limits [0, 0] when only one body is attached to the joint
// using dJointAttach(jId, bId, 0);
//
// The body should not move since their is no room between the two limits
//
TEST_FIXTURE(Fixture_dxJointPiston_Compare_Body_At_Zero_Axis_Along_X,
test_Limit_0_0_One_Body_on_left)
{
dBodyAddForce (bId1_12, 4, 0, 0);
dJointAttach(jId_12, bId1_12, bId2_12);
dJointSetPistonParam(jId_12, dParamLoStop, 0);
dJointSetPistonParam(jId_12, dParamHiStop, 0);
dJointAttach(fixed, 0, bId2_12);
dJointSetFixed(fixed);
dJointAttach(jId, bId, 0);
dJointSetPistonParam(jId, dParamLoStop, 0);
dJointSetPistonParam(jId, dParamHiStop, 0);
for (int i=0; i<500; ++i)
dWorldStep(wId, 1.0);
const dReal *pos1_12 = dBodyGetPosition(bId1_12);
const dReal *pos = dBodyGetPosition(bId);
CHECK_CLOSE (pos1_12[0], pos[0], 1e-4);
CHECK_CLOSE (pos1_12[1], pos[1], 1e-4);
CHECK_CLOSE (pos1_12[2], pos[2], 1e-4);
CHECK_CLOSE (0, pos[0], 1e-4);
CHECK_CLOSE (0, pos[1], 1e-4);
CHECK_CLOSE (0, pos[2], 1e-4);
const dReal *q1_12 = dBodyGetQuaternion(bId1_12);
const dReal *q = dBodyGetQuaternion(bId);
CHECK_CLOSE (q1_12[0], q[0], 1e-4);
CHECK_CLOSE (q1_12[1], q[1], 1e-4);
CHECK_CLOSE (q1_12[2], q[2], 1e-4);
CHECK_CLOSE (q1_12[3], q[3], 1e-4);
}
// This test compares the result of a slider with 2 bodies where body 1 is
// fixed to the world to a slider with only one body at position 2.
//
// Test the limits [0, 0] when only one body is attached to the joint
// using dJointAttach(jId, 0, bId);
//
// The body should not move since their is no room between the two limits
//
TEST_FIXTURE(Fixture_dxJointPiston_Compare_Body_At_Zero_Axis_Along_X,
test_Limit_0_0_One_Body_on_right)
{
dBodyAddForce (bId2_12, 4, 0, 0);
dJointAttach(jId_12, bId1_12, bId2_12);
dJointSetPistonParam(jId_12, dParamLoStop, 0);
dJointSetPistonParam(jId_12, dParamHiStop, 0);
dJointAttach(fixed, bId1_12, 0);
dJointSetFixed(fixed);
dJointAttach(jId, 0, bId);
dJointSetPistonParam(jId, dParamLoStop, 0);
dJointSetPistonParam(jId, dParamHiStop, 0);
for (int i=0; i<500; ++i)
dWorldStep(wId, 1.0);
const dReal *pos2_12 = dBodyGetPosition(bId2_12);
const dReal *pos = dBodyGetPosition(bId);
CHECK_CLOSE (pos2_12[0], pos[0], 1e-4);
CHECK_CLOSE (pos2_12[1], pos[1], 1e-4);
CHECK_CLOSE (pos2_12[2], pos[2], 1e-4);
CHECK_CLOSE (0, pos[0], 1e-4);
CHECK_CLOSE (0, pos[1], 1e-4);
CHECK_CLOSE (0, pos[2], 1e-4);
const dReal *q2_12 = dBodyGetQuaternion(bId2_12);
const dReal *q = dBodyGetQuaternion(bId);
CHECK_CLOSE (q2_12[0], q[0], 1e-4);
CHECK_CLOSE (q2_12[1], q[1], 1e-4);
CHECK_CLOSE (q2_12[2], q[2], 1e-4);
CHECK_CLOSE (q2_12[3], q[3], 1e-4);
}
} // End of SUITE TestdxJointPiston