/************************************************************************* * * * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * * All rights reserved. Email: russ@q12.org Web: www.q12.org * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of EITHER: * * (1) The GNU Lesser General Public License as published by the Free * * Software Foundation; either version 2.1 of the License, or (at * * your option) any later version. The text of the GNU Lesser * * General Public License is included with this library in the * * file LICENSE.TXT. * * (2) The BSD-style license that is included with this library in * * the file LICENSE-BSD.TXT. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * * LICENSE.TXT and LICENSE-BSD.TXT for more details. * * * *************************************************************************/ #ifndef _ODE_ODEMATH_H_ #define _ODE_ODEMATH_H_ #include /* * macro to access elements i,j in an NxM matrix A, independent of the * matrix storage convention. */ #define dACCESS33(A,i,j) ((A)[(i)*4+(j)]) /* * Macro to test for valid floating point values */ #define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]))) #define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3]))) #define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]))) #define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) )) ODE_PURE_INLINE void dZeroVector3(dVector3 res) { res[dV3E_X] = REAL(0.0); res[dV3E_Y] = REAL(0.0); res[dV3E_Z] = REAL(0.0); } ODE_PURE_INLINE void dAssignVector3(dVector3 res, dReal x, dReal y, dReal z) { res[dV3E_X] = x; res[dV3E_Y] = y; res[dV3E_Z] = z; } ODE_PURE_INLINE void dZeroMatrix3(dMatrix3 res) { res[dM3E_XX] = REAL(0.0); res[dM3E_XY] = REAL(0.0); res[dM3E_XZ] = REAL(0.0); res[dM3E_YX] = REAL(0.0); res[dM3E_YY] = REAL(0.0); res[dM3E_YZ] = REAL(0.0); res[dM3E_ZX] = REAL(0.0); res[dM3E_ZY] = REAL(0.0); res[dM3E_ZZ] = REAL(0.0); } ODE_PURE_INLINE void dZeroMatrix4(dMatrix4 res) { res[dM4E_XX] = REAL(0.0); res[dM4E_XY] = REAL(0.0); res[dM4E_XZ] = REAL(0.0); res[dM4E_XO] = REAL(0.0); res[dM4E_YX] = REAL(0.0); res[dM4E_YY] = REAL(0.0); res[dM4E_YZ] = REAL(0.0); res[dM4E_YO] = REAL(0.0); res[dM4E_ZX] = REAL(0.0); res[dM4E_ZY] = REAL(0.0); res[dM4E_ZZ] = REAL(0.0); res[dM4E_ZO] = REAL(0.0); res[dM4E_OX] = REAL(0.0); res[dM4E_OY] = REAL(0.0); res[dM4E_OZ] = REAL(0.0); res[dM4E_OO] = REAL(0.0); } /* Some vector math */ ODE_PURE_INLINE void dAddVectors3(dReal *res, const dReal *a, const dReal *b) { const dReal res_0 = a[0] + b[0]; const dReal res_1 = a[1] + b[1]; const dReal res_2 = a[2] + b[2]; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE void dSubtractVectors3(dReal *res, const dReal *a, const dReal *b) { const dReal res_0 = a[0] - b[0]; const dReal res_1 = a[1] - b[1]; const dReal res_2 = a[2] - b[2]; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE void dAddVectorScaledVector3(dReal *res, const dReal *a, const dReal *b, dReal b_scale) { const dReal res_0 = a[0] + b_scale * b[0]; const dReal res_1 = a[1] + b_scale * b[1]; const dReal res_2 = a[2] + b_scale * b[2]; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE void dAddScaledVectors3(dReal *res, const dReal *a, const dReal *b, dReal a_scale, dReal b_scale) { const dReal res_0 = a_scale * a[0] + b_scale * b[0]; const dReal res_1 = a_scale * a[1] + b_scale * b[1]; const dReal res_2 = a_scale * a[2] + b_scale * b[2]; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE void dAddThreeScaledVectors3(dReal *res, const dReal *a, const dReal *b, const dReal *c, dReal a_scale, dReal b_scale, dReal c_scale) { const dReal res_0 = a_scale * a[0] + b_scale * b[0] + c_scale * c[0]; const dReal res_1 = a_scale * a[1] + b_scale * b[1] + c_scale * c[1]; const dReal res_2 = a_scale * a[2] + b_scale * b[2] + c_scale * c[2]; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE void dScaleVector3(dReal *res, dReal nScale) { res[0] *= nScale ; res[1] *= nScale ; res[2] *= nScale ; } ODE_PURE_INLINE void dNegateVector3(dReal *res) { res[0] = -res[0]; res[1] = -res[1]; res[2] = -res[2]; } ODE_PURE_INLINE void dCopyVector3(dReal *res, const dReal *a) { const dReal res_0 = a[0]; const dReal res_1 = a[1]; const dReal res_2 = a[2]; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE void dCopyScaledVector3(dReal *res, const dReal *a, dReal nScale) { const dReal res_0 = a[0] * nScale; const dReal res_1 = a[1] * nScale; const dReal res_2 = a[2] * nScale; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE void dCopyNegatedVector3(dReal *res, const dReal *a) { const dReal res_0 = -a[0]; const dReal res_1 = -a[1]; const dReal res_2 = -a[2]; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE void dCopyVector4(dReal *res, const dReal *a) { const dReal res_0 = a[0]; const dReal res_1 = a[1]; const dReal res_2 = a[2]; const dReal res_3 = a[3]; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; res[3] = res_3; } ODE_PURE_INLINE void dCopyMatrix4x4(dReal *res, const dReal *a) { dCopyVector4(res + 0, a + 0); dCopyVector4(res + 4, a + 4); dCopyVector4(res + 8, a + 8); } ODE_PURE_INLINE void dCopyMatrix4x3(dReal *res, const dReal *a) { dCopyVector3(res + 0, a + 0); dCopyVector3(res + 4, a + 4); dCopyVector3(res + 8, a + 8); } ODE_PURE_INLINE void dGetMatrixColumn3(dReal *res, const dReal *a, unsigned n) { const dReal res_0 = a[n + 0]; const dReal res_1 = a[n + 4]; const dReal res_2 = a[n + 8]; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE dReal dCalcVectorLength3(const dReal *a) { return dSqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); } ODE_PURE_INLINE dReal dCalcVectorLengthSquare3(const dReal *a) { return (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); } ODE_PURE_INLINE dReal dCalcPointDepth3(const dReal *test_p, const dReal *plane_p, const dReal *plane_n) { return (plane_p[0] - test_p[0]) * plane_n[0] + (plane_p[1] - test_p[1]) * plane_n[1] + (plane_p[2] - test_p[2]) * plane_n[2]; } /* * 3-way dot product. _dCalcVectorDot3 means that elements of `a' and `b' are spaced * step_a and step_b indexes apart respectively. dCalcVectorDot3() means dDot311. */ ODE_PURE_INLINE dReal _dCalcVectorDot3(const dReal *a, const dReal *b, unsigned step_a, unsigned step_b) { return a[0] * b[0] + a[step_a] * b[step_b] + a[2 * step_a] * b[2 * step_b]; } ODE_PURE_INLINE dReal dCalcVectorDot3 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,1); } ODE_PURE_INLINE dReal dCalcVectorDot3_13 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,3); } ODE_PURE_INLINE dReal dCalcVectorDot3_31 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,1); } ODE_PURE_INLINE dReal dCalcVectorDot3_33 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,3); } ODE_PURE_INLINE dReal dCalcVectorDot3_14 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,4); } ODE_PURE_INLINE dReal dCalcVectorDot3_41 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,1); } ODE_PURE_INLINE dReal dCalcVectorDot3_44 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,4); } /* * cross product, set res = a x b. _dCalcVectorCross3 means that elements of `res', `a' * and `b' are spaced step_res, step_a and step_b indexes apart respectively. * dCalcVectorCross3() means dCross3111. */ ODE_PURE_INLINE void _dCalcVectorCross3(dReal *res, const dReal *a, const dReal *b, unsigned step_res, unsigned step_a, unsigned step_b) { const dReal res_0 = a[ step_a]*b[2*step_b] - a[2*step_a]*b[ step_b]; const dReal res_1 = a[2*step_a]*b[ 0] - a[ 0]*b[2*step_b]; const dReal res_2 = a[ 0]*b[ step_b] - a[ step_a]*b[ 0]; /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[ 0] = res_0; res[ step_res] = res_1; res[2*step_res] = res_2; } ODE_PURE_INLINE void dCalcVectorCross3 (dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 1); } ODE_PURE_INLINE void dCalcVectorCross3_114(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 4); } ODE_PURE_INLINE void dCalcVectorCross3_141(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 1); } ODE_PURE_INLINE void dCalcVectorCross3_144(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 4); } ODE_PURE_INLINE void dCalcVectorCross3_411(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 1); } ODE_PURE_INLINE void dCalcVectorCross3_414(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 4); } ODE_PURE_INLINE void dCalcVectorCross3_441(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 1); } ODE_PURE_INLINE void dCalcVectorCross3_444(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 4); } ODE_PURE_INLINE void dAddVectorCross3(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dCalcVectorCross3(tmp, a, b); dAddVectors3(res, res, tmp); } ODE_PURE_INLINE void dSubtractVectorCross3(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dCalcVectorCross3(tmp, a, b); dSubtractVectors3(res, res, tmp); } /* * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b. * A is stored by rows, and has `skip' elements per row. the matrix is * assumed to be already zero, so this does not write zero elements! * if (plus,minus) is (+,-) then a positive version will be written. * if (plus,minus) is (-,+) then a negative version will be written. */ ODE_PURE_INLINE void dSetCrossMatrixPlus(dReal *res, const dReal *a, unsigned skip) { const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2]; res[1] = -a_2; res[2] = +a_1; res[skip+0] = +a_2; res[skip+2] = -a_0; res[2*skip+0] = -a_1; res[2*skip+1] = +a_0; } ODE_PURE_INLINE void dSetCrossMatrixMinus(dReal *res, const dReal *a, unsigned skip) { const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2]; res[1] = +a_2; res[2] = -a_1; res[skip+0] = -a_2; res[skip+2] = +a_0; res[2*skip+0] = +a_1; res[2*skip+1] = -a_0; } /* * compute the distance between two 3D-vectors */ ODE_PURE_INLINE dReal dCalcPointsDistance3(const dReal *a, const dReal *b) { dReal res; dReal tmp[3]; dSubtractVectors3(tmp, a, b); res = dCalcVectorLength3(tmp); return res; } /* * special case matrix multiplication, with operator selection */ ODE_PURE_INLINE void dMultiplyHelper0_331(dReal *res, const dReal *a, const dReal *b) { const dReal res_0 = dCalcVectorDot3(a, b); const dReal res_1 = dCalcVectorDot3(a + 4, b); const dReal res_2 = dCalcVectorDot3(a + 8, b); /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE void dMultiplyHelper1_331(dReal *res, const dReal *a, const dReal *b) { const dReal res_0 = dCalcVectorDot3_41(a, b); const dReal res_1 = dCalcVectorDot3_41(a + 1, b); const dReal res_2 = dCalcVectorDot3_41(a + 2, b); /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } ODE_PURE_INLINE void dMultiplyHelper0_133(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper1_331(res, b, a); } ODE_PURE_INLINE void dMultiplyHelper1_133(dReal *res, const dReal *a, const dReal *b) { const dReal res_0 = dCalcVectorDot3_44(a, b); const dReal res_1 = dCalcVectorDot3_44(a + 1, b); const dReal res_2 = dCalcVectorDot3_44(a + 2, b); /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ res[0] = res_0; res[1] = res_1; res[2] = res_2; } /* Note: NEVER call any of these functions/macros with the same variable for A and C, it is not equivalent to A*=B. */ ODE_PURE_INLINE void dMultiply0_331(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper0_331(res, a, b); } ODE_PURE_INLINE void dMultiply1_331(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper1_331(res, a, b); } ODE_PURE_INLINE void dMultiply0_133(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper0_133(res, a, b); } ODE_PURE_INLINE void dMultiply0_333(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper0_133(res + 0, a + 0, b); dMultiplyHelper0_133(res + 4, a + 4, b); dMultiplyHelper0_133(res + 8, a + 8, b); } ODE_PURE_INLINE void dMultiply1_333(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper1_133(res + 0, b, a + 0); dMultiplyHelper1_133(res + 4, b, a + 1); dMultiplyHelper1_133(res + 8, b, a + 2); } ODE_PURE_INLINE void dMultiply2_333(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper0_331(res + 0, b, a + 0); dMultiplyHelper0_331(res + 4, b, a + 4); dMultiplyHelper0_331(res + 8, b, a + 8); } ODE_PURE_INLINE void dMultiplyAdd0_331(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper0_331(tmp, a, b); dAddVectors3(res, res, tmp); } ODE_PURE_INLINE void dMultiplyAdd1_331(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper1_331(tmp, a, b); dAddVectors3(res, res, tmp); } ODE_PURE_INLINE void dMultiplyAdd0_133(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper0_133(tmp, a, b); dAddVectors3(res, res, tmp); } ODE_PURE_INLINE void dMultiplyAdd0_333(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper0_133(tmp, a + 0, b); dAddVectors3(res+ 0, res + 0, tmp); dMultiplyHelper0_133(tmp, a + 4, b); dAddVectors3(res + 4, res + 4, tmp); dMultiplyHelper0_133(tmp, a + 8, b); dAddVectors3(res + 8, res + 8, tmp); } ODE_PURE_INLINE void dMultiplyAdd1_333(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper1_133(tmp, b, a + 0); dAddVectors3(res + 0, res + 0, tmp); dMultiplyHelper1_133(tmp, b, a + 1); dAddVectors3(res + 4, res + 4, tmp); dMultiplyHelper1_133(tmp, b, a + 2); dAddVectors3(res + 8, res + 8, tmp); } ODE_PURE_INLINE void dMultiplyAdd2_333(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper0_331(tmp, b, a + 0); dAddVectors3(res + 0, res + 0, tmp); dMultiplyHelper0_331(tmp, b, a + 4); dAddVectors3(res + 4, res + 4, tmp); dMultiplyHelper0_331(tmp, b, a + 8); dAddVectors3(res + 8, res + 8, tmp); } ODE_PURE_INLINE dReal dCalcMatrix3Det( const dReal* mat ) { dReal det; det = mat[0] * ( mat[5]*mat[10] - mat[9]*mat[6] ) - mat[1] * ( mat[4]*mat[10] - mat[8]*mat[6] ) + mat[2] * ( mat[4]*mat[9] - mat[8]*mat[5] ); return( det ); } /** Closed form matrix inversion, copied from collision_util.h for use in the stepper. Returns the determinant. returns 0 and does nothing if the matrix is singular. */ ODE_PURE_INLINE dReal dInvertMatrix3(dReal *dst, const dReal *ma) { dReal det; dReal detRecip; det = dCalcMatrix3Det( ma ); /* Setting an arbitrary non-zero threshold for the determinant doesn't do anyone any favors. The condition number is the important thing. If all the eigen-values of the matrix are small, so is the determinant, but it can still be well conditioned. A single extremely large eigen-value could push the determinant over threshold, but produce a very unstable result if the other eigen-values are small. So we just say that the determinant must be non-zero and trust the caller to provide well-conditioned matrices. */ if ( det == 0 ) { return 0; } detRecip = dRecip(det); dst[0] = ( ma[5]*ma[10] - ma[6]*ma[9] ) * detRecip; dst[1] = ( ma[9]*ma[2] - ma[1]*ma[10] ) * detRecip; dst[2] = ( ma[1]*ma[6] - ma[5]*ma[2] ) * detRecip; dst[4] = ( ma[6]*ma[8] - ma[4]*ma[10] ) * detRecip; dst[5] = ( ma[0]*ma[10] - ma[8]*ma[2] ) * detRecip; dst[6] = ( ma[4]*ma[2] - ma[0]*ma[6] ) * detRecip; dst[8] = ( ma[4]*ma[9] - ma[8]*ma[5] ) * detRecip; dst[9] = ( ma[8]*ma[1] - ma[0]*ma[9] ) * detRecip; dst[10] = ( ma[0]*ma[5] - ma[1]*ma[4] ) * detRecip; return det; } /* Include legacy macros here */ #include #ifdef __cplusplus extern "C" { #endif /* * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length) */ /* For DLL export*/ ODE_API int dSafeNormalize3 (dVector3 a); ODE_API int dSafeNormalize4 (dVector4 a); ODE_API void dNormalize3 (dVector3 a); /* Potentially asserts on zero vec*/ ODE_API void dNormalize4 (dVector4 a); /* Potentially asserts on zero vec*/ /* * given a unit length "normal" vector n, generate vectors p and q vectors * that are an orthonormal basis for the plane space perpendicular to n. * i.e. this makes p,q such that n,p,q are all perpendicular to each other. * q will equal n x p. if n is not unit length then p will be unit length but * q wont be. */ ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q); /* Makes sure the matrix is a proper rotation, returns a boolean status */ ODE_API int dOrthogonalizeR(dMatrix3 m); #ifdef __cplusplus } #endif #endif