horror/thirdparty/ode-0.16.5/tests/joints/universal.cpp

2120 lines
65 KiB
C++
Raw Permalink Normal View History

2024-06-10 17:48:14 +08:00
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
////////////////////////////////////////////////////////////////////////////////
// This file creates unit tests for some of the functions found in:
// ode/src/joinst/universal.cpp
//
//
////////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include <UnitTest++.h>
#include <ode/ode.h>
#include "../../ode/src/config.h"
#include "../../ode/src/joints/universal.h"
dReal d2r(dReal degree)
{
return degree * (dReal)(M_PI / 180.0);
}
dReal r2d(dReal degree)
{
return degree * (dReal)(180.0/M_PI);
}
SUITE (TestdxJointUniversal)
{
// The 2 bodies are positioned at (0, 0, 0)
// The bodies have no rotation.
// The joint is a Universal Joint
// Axis1 is along the X axis
// Axis2 is along the Y axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y
{
Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreateUniversal (wId, 0);
joint = (dxJointUniversal*) jId;
dJointAttach (jId, bId1, bId2);
}
~Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dBodyID bId2;
dJointID jId;
dxJointUniversal* joint;
};
// The 2 bodies are positioned at (-1, -2, -3) and (11, 22, 33)
// The bodies have rotation of 27deg around some axis.
// The joint is a Universal Joint
// Axis is along the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointUniversal_B1_and_B2_At_Random_Axis_Along_X
{
Fixture_dxJointUniversal_B1_and_B2_At_Random_Axis_Along_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, -1, -2, -3);
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 11, 22, 33);
dMatrix3 R;
dVector3 axis;
axis[0] = REAL(0.53);
axis[1] = -REAL(0.71);
axis[2] = REAL(0.43);
dNormalize3(axis);
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2],
REAL(0.47123)); // 27deg
dBodySetRotation (bId1, R);
axis[0] = REAL(1.2);
axis[1] = REAL(0.87);
axis[2] = -REAL(0.33);
dNormalize3(axis);
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2],
REAL(0.47123)); // 27deg
dBodySetRotation (bId2, R);
jId = dJointCreateUniversal (wId, 0);
joint = (dxJointUniversal*) jId;
dJointAttach (jId, bId1, bId2);
}
~Fixture_dxJointUniversal_B1_and_B2_At_Random_Axis_Along_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dBodyID bId2;
dJointID jId;
dxJointUniversal* joint;
};
// Only one body body1 at (0,0,0)
// The joint is an Universal Joint.
// Axis1 is along the X axis
// Axis2 is along the Y axis
// Anchor at (0, 0, 0)
//
// ^Y
// |
// |
// |
// |
// |
// Z <-- X
struct Fixture_dxJointUniversal_B1_At_Zero_Default_Axes
{
Fixture_dxJointUniversal_B1_At_Zero_Default_Axes()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
jId = dJointCreateUniversal (wId, 0);
dJointAttach (jId, bId1, NULL);
dJointSetUniversalAnchor (jId, 0, 0, 0);
}
~Fixture_dxJointUniversal_B1_At_Zero_Default_Axes()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dJointID jId;
};
// Only one body body2 at (0,0,0)
// The joint is an Universal Joint.
// Axis1 is along the X axis.
// Axis2 is along the Y axis.
// Anchor at (0, 0, 0)
//
// ^Y
// |
// |
// |
// |
// |
// Z <-- X
struct Fixture_dxJointUniversal_B2_At_Zero_Default_Axes
{
Fixture_dxJointUniversal_B2_At_Zero_Default_Axes()
{
wId = dWorldCreate();
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreateUniversal (wId, 0);
dJointAttach (jId, NULL, bId2);
dJointSetUniversalAnchor (jId, 0, 0, 0);
}
~Fixture_dxJointUniversal_B2_At_Zero_Default_Axes()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId2;
dJointID jId;
};
// Test is dJointGetUniversalAngles versus
// dJointGetUniversalAngle1 and dJointGetUniversalAngle2 dJointGetUniversalAxis
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y,
test_dJointSetGetUniversalAngles_Versus_Angle1_and_Angle2)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dMatrix3 R;
dReal ang1, ang2;
dVector3 axis1;
dJointGetUniversalAxis1 (jId, axis1);
dVector3 axis2;
dJointGetUniversalAxis2 (jId, axis2);
ang1 = d2r(REAL(23.0));
dRFromAxisAndAngle (R, axis1[0], axis1[1], axis1[2], ang1);
dBodySetRotation (bId1, R);
ang2 = d2r(REAL(17.0));
dRFromAxisAndAngle (R, axis2[0], axis2[1], axis2[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
// ax1 and ax2 are pseudo-random axis. N.B. They are NOT the axis of the joints.
dVector3 ax1;
ax1[0] = REAL(0.2);
ax1[1] = -REAL(0.67);
ax1[2] = -REAL(0.81);
dNormalize3(ax1);
dVector3 ax2;
ax2[0] = REAL(0.62);
ax2[1] = REAL(0.31);
ax2[2] = REAL(0.43);
dNormalize3(ax2);
ang1 = d2r(REAL(23.0));
dRFromAxisAndAngle (R, ax1[0], ax1[1], ax1[2], ang1);
dBodySetRotation (bId1, R);
ang2 = d2r(REAL(0.0));
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (angle1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (angle2, dJointGetUniversalAngle2 (jId), 1e-4);
ang1 = d2r(REAL(0.0));
ang2 = d2r(REAL(23.0));
dRFromAxisAndAngle (R, ax2[0], ax2[1], ax2[2], ang2);
dBodySetRotation (bId1, R);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (angle1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (angle2, dJointGetUniversalAngle2 (jId), 1e-4);
ang1 = d2r(REAL(38.0));
dRFromAxisAndAngle (R, ax1[0], ax1[1], ax1[2], ang2);
dBodySetRotation (bId1, R);
ang2 = d2r(REAL(-43.0));
dRFromAxisAndAngle (R, ax2[0], ax2[1], ax2[2], ang2);
dBodySetRotation (bId1, R);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (angle1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (angle2, dJointGetUniversalAngle2 (jId), 1e-4);
// Try with random axis for the axis of the joints
dRSetIdentity(R);
dBodySetRotation (bId1, R);
dBodySetRotation (bId1, R);
axis1[0] = REAL(0.32);
axis1[1] = -REAL(0.57);
axis1[2] = REAL(0.71);
dNormalize3(axis1);
axis2[0] = -REAL(0.26);
axis2[1] = -REAL(0.31);
axis2[2] = REAL(0.69);
dNormalize3(axis2);
dVector3 cross;
dCalcVectorCross3(cross, axis1, axis2);
dJointSetUniversalAxis1(jId, axis1[0], axis1[1], axis1[2]);
dJointSetUniversalAxis2(jId, cross[0], cross[1], cross[2]);
ang1 = d2r(REAL(23.0));
dRFromAxisAndAngle (R, ax1[0], ax1[1], ax1[2], ang1);
dBodySetRotation (bId1, R);
ang2 = d2r(REAL(0.0));
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (angle1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (angle2, dJointGetUniversalAngle2 (jId), 1e-4);
ang1 = d2r(REAL(0.0));
ang2 = d2r(REAL(23.0));
dRFromAxisAndAngle (R, ax2[0], ax2[1], ax2[2], ang2);
dBodySetRotation (bId1, R);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (angle1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (angle2, dJointGetUniversalAngle2 (jId), 1e-4);
ang1 = d2r(REAL(38.0));
dRFromAxisAndAngle (R, ax1[0], ax1[1], ax1[2], ang2);
dBodySetRotation (bId1, R);
ang2 = d2r(REAL(-43.0));
dRFromAxisAndAngle (R, ax2[0], ax2[1], ax2[2], ang2);
dBodySetRotation (bId1, R);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (angle1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (angle2, dJointGetUniversalAngle2 (jId), 1e-4);
}
// =========================================================================
// Test ONE BODY behavior
// =========================================================================
// Test when there is only one body at position one on the joint
TEST_FIXTURE (Fixture_dxJointUniversal_B1_At_Zero_Default_Axes,
test_dJointGetUniversalAngle1_1Body_B1)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis1;
dJointGetUniversalAxis1 (jId, axis1);
dVector3 axis2;
dJointGetUniversalAxis2 (jId, axis2);
dMatrix3 R;
dReal ang1 = REAL(0.23);
dRFromAxisAndAngle (R, axis1[0], axis1[1], axis1[2], ang1);
dBodySetRotation (bId1, R);
dReal ang2 = REAL(0.0);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dMatrix3 I;
dRSetIdentity(I); // Set the rotation of the body to be the Identity (i.e. zero)
dBodySetRotation (bId1, I);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
// Test the same rotation, when axis1 is inverted
dJointSetUniversalAxis1 (jId, -axis1[0], -axis1[1], -axis1[2]);
dBodySetRotation (bId1, R);
CHECK_CLOSE (-ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (-ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
// Test the same rotation, when axis1 is default and axis2 is inverted
dBodySetRotation (bId1, I);
dJointSetUniversalAxis1 (jId, axis1[0], axis1[1], axis1[2]);
dJointSetUniversalAxis2 (jId, -axis2[0], -axis2[1], -axis2[2]);
dBodySetRotation (bId1, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (ang2, angle2, 1e-4);
}
// Test when there is only one body at position two on the joint
TEST_FIXTURE (Fixture_dxJointUniversal_B2_At_Zero_Default_Axes,
test_dJointGetUniversalAngle1_1Body_B2)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis1;
dJointGetUniversalAxis1 (jId, axis1);
dVector3 axis2;
dJointGetUniversalAxis2 (jId, axis2);
dMatrix3 R;
dReal ang1 = REAL(0.0);
dReal ang2 = REAL(0.23);
dRFromAxisAndAngle (R, axis2[0], axis2[1], axis2[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dMatrix3 I;
dRSetIdentity(I); // Set the rotation of the body to be the Identity (i.e. zero)
dBodySetRotation (bId2, I);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointSetUniversalAxis2 (jId, -axis2[0], -axis2[1], -axis2[2]);
dBodySetRotation (bId2, R);
CHECK_CLOSE (-ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (-ang1, angle1, 1e-4);
CHECK_CLOSE (ang2, angle2, 1e-4);
// Test the same rotation, when axis1 is inverted and axis2 is default
dBodySetRotation (bId2, I);
dJointSetUniversalAxis1 (jId, -axis1[0], -axis1[1], -axis1[2]);
dJointSetUniversalAxis2 (jId, axis2[0], axis2[1], axis2[2]);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
}
// =========================================================================
//
// =========================================================================
// Test is dJointSetUniversalAxis and dJointGetUniversalAxis return same value
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Random_Axis_Along_X,
test_dJointSetGetUniversalAxis)
{
dVector3 axisOrig, axis;
dJointGetUniversalAxis1 (jId, axisOrig);
dJointGetUniversalAxis1 (jId, axis);
dJointSetUniversalAxis1 (jId, axis[0], axis[1], axis[2]);
dJointGetUniversalAxis1 (jId, axis);
CHECK_CLOSE (axis[0], axisOrig[0] , 1e-4);
CHECK_CLOSE (axis[1], axisOrig[1] , 1e-4);
CHECK_CLOSE (axis[2], axisOrig[2] , 1e-4);
dJointGetUniversalAxis2 (jId, axisOrig);
dJointGetUniversalAxis2(jId, axis);
dJointSetUniversalAxis2 (jId, axis[0], axis[1], axis[2]);
dJointGetUniversalAxis2 (jId, axis);
CHECK_CLOSE (axis[0], axisOrig[0] , 1e-4);
CHECK_CLOSE (axis[1], axisOrig[1] , 1e-4);
CHECK_CLOSE (axis[2], axisOrig[2] , 1e-4);
dVector3 anchor1, anchor2, anchorOrig1, anchorOrig2;
dJointGetUniversalAnchor (jId, anchorOrig1);
dJointGetUniversalAnchor (jId, anchor1);
dJointGetUniversalAnchor2 (jId, anchorOrig2);
dJointGetUniversalAnchor2 (jId, anchor2);
dJointSetUniversalAnchor (jId, anchor1[0], anchor1[1], anchor1[2]);
dJointGetUniversalAnchor (jId, anchor1);
dJointGetUniversalAnchor2 (jId, anchor2);
CHECK_CLOSE (anchor1[0], anchorOrig1[0] , 1e-4);
CHECK_CLOSE (anchor1[1], anchorOrig1[1] , 1e-4);
CHECK_CLOSE (anchor1[2], anchorOrig1[2] , 1e-4);
CHECK_CLOSE (anchor2[0], anchorOrig2[0] , 1e-4);
CHECK_CLOSE (anchor2[1], anchorOrig2[1] , 1e-4);
CHECK_CLOSE (anchor2[2], anchorOrig2[2] , 1e-4);
}
// Create 2 bodies attached by a Universal joint
// Axis is along the X axis (Default value)
// Anchor at (0, 0, 0) (Default value)
//
// ^Y
// |
// * Body2
// |
// |
// Body1 |
// * Z-------->
struct dxJointUniversal_Test_Initialization
{
dxJointUniversal_Test_Initialization()
{
wId = dWorldCreate();
// Remove gravity to have the only force be the force of the joint
dWorldSetGravity(wId, 0,0,0);
for (int j=0; j<2; ++j)
{
bId[j][0] = dBodyCreate (wId);
dBodySetPosition (bId[j][0], -1, -2, -3);
bId[j][1] = dBodyCreate (wId);
dBodySetPosition (bId[j][1], 11, 22, 33);
dMatrix3 R;
dVector3 axis; // Random axis
axis[0] = REAL(0.53);
axis[1] = -REAL(0.71);
axis[2] = REAL(0.43);
dNormalize3(axis);
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2],
REAL(0.47123)); // 27deg
dBodySetRotation (bId[j][0], R);
axis[0] = REAL(1.2);
axis[1] = REAL(0.87);
axis[2] = -REAL(0.33);
dNormalize3(axis);
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2],
REAL(0.47123)); // 27deg
dBodySetRotation (bId[j][1], R);
jId[j] = dJointCreateUniversal (wId, 0);
dJointAttach (jId[j], bId[j][0], bId[j][1]);
dJointSetUniversalParam(jId[j], dParamLoStop, 1);
dJointSetUniversalParam(jId[j], dParamHiStop, 2);
dJointSetUniversalParam(jId[j], dParamFMax, 200);
}
}
~dxJointUniversal_Test_Initialization()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId[2][2];
dJointID jId[2];
};
// Test if setting a Universal with its default values
// will behave the same as a default Universal joint
TEST_FIXTURE (dxJointUniversal_Test_Initialization,
test_Universal_Initialization)
{
using namespace std;
dVector3 axis;
dJointGetUniversalAxis1(jId[1], axis);
dJointSetUniversalAxis1(jId[1], axis[0], axis[1], axis[2]);
dJointGetUniversalAxis2(jId[1], axis);
dJointSetUniversalAxis2(jId[1], axis[0], axis[1], axis[2]);
dVector3 anchor;
dJointGetUniversalAnchor(jId[1], anchor);
dJointSetUniversalAnchor(jId[1], anchor[0], anchor[1], anchor[2]);
for (int b=0; b<2; ++b)
{
// Compare body b of the first joint with its equivalent on the
// second joint
const dReal *qA = dBodyGetQuaternion(bId[0][b]);
const dReal *qB = dBodyGetQuaternion(bId[1][b]);
CHECK_CLOSE (qA[0], qB[0], 1e-4);
CHECK_CLOSE (qA[1], qB[1], 1e-4);
CHECK_CLOSE (qA[2], qB[2], 1e-4);
CHECK_CLOSE (qA[3], qB[3], 1e-4);
}
dWorldStep (wId,0.5);
dWorldStep (wId,0.5);
dWorldStep (wId,0.5);
dWorldStep (wId,0.5);
for (int b=0; b<2; ++b)
{
// Compare body b of the first joint with its equivalent on the
// second joint
const dReal *qA = dBodyGetQuaternion(bId[0][b]);
const dReal *qB = dBodyGetQuaternion(bId[1][b]);
CHECK_CLOSE (qA[0], qB[0], 1e-4);
CHECK_CLOSE (qA[1], qB[1], 1e-4);
CHECK_CLOSE (qA[2], qB[2], 1e-4);
CHECK_CLOSE (qA[3], qB[3], 1e-4);
const dReal *posA = dBodyGetPosition(bId[0][b]);
const dReal *posB = dBodyGetPosition(bId[1][b]);
CHECK_CLOSE (posA[0], posB[0], 1e-4);
CHECK_CLOSE (posA[1], posB[1], 1e-4);
CHECK_CLOSE (posA[2], posB[2], 1e-4);
CHECK_CLOSE (posA[3], posB[3], 1e-4);
}
}
// ==========================================================================
// Testing the offset
// TODO:
// - Test Axis1Offset(...., 0, ang2);
// ==========================================================================
// Rotate first body 90deg around X (Axis1) then back to original position
//
// ^ ^ ^ Z ^
// | | => <--- | |
// | | | |
// B1 B2 B1 B2 .----->Y
// /
// /
// v X (N.B. X is going out of the screen)
//
// Set Axis1 with an Offset of 90deg
// ^ ^ ^
// <--- | => | |
// | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y,
test_dJointSetUniversalAxis1Offset_B1_90deg)
{
dMatrix3 R;
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis1 (jId, axis);
dReal ang1 = d2r(REAL(90.0));
dReal ang2 = d2r(REAL(0.0));
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang1);
dBodySetRotation (bId1, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (ang2, angle2, 1e-4);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2],
ang1, ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate 2nd body 90deg around (Axis2) then back to original position
// Offset when setting axis1
//
// ^ ^ ^ Z ^
// | | => <--- | |
// | | | |
// B1 B2 B1 B2 .----->Y
// /
// /
// v X (N.B. X is going out of the screen)
//
// Set Axis1 with an Offset of 90deg
// ^ ^ ^
// <--- | => | |
// | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y,
test_dJointSetUniversalAxis1Offset_B2_90deg)
{
dMatrix3 R;
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 ax1, ax2;
dJointGetUniversalAxis1 (jId, ax1);
dJointGetUniversalAxis2 (jId, ax2);
dReal ang1 = d2r(REAL(0.0));
dReal ang2 = d2r(REAL(90.0));
dRFromAxisAndAngle (R, ax2[0], ax2[1], ax2[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dJointSetUniversalAxis1Offset (jId, ax1[0], ax1[1], ax1[2],
ang1, -ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId1, R);
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate second body 90deg around Y (Axis2) then back to original position
//
// ^ ^ ^ Z ^
// | | => | . |
// | | | |
// B1 B2 B1 B2 .----->Y
// /
// /
// v X (N.B. X is going out of the screen)
//
// Set Axis2 with an Offset of 90deg
// ^ ^ ^
// | . => | |
// | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y,
test_dJointSetUniversalAxisOffset_B2_90deg)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis2 (jId, axis);
dReal ang1 = d2r(REAL(0.0));
dReal ang2 = d2r(REAL(90.0));
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dJointSetUniversalAxis2Offset (jId, axis[0], axis[1], axis[2],
ang1, -ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate 2nd body -90deg around Y (Axis2) then back to original position
//
// ^ ^ ^ Z ^
// | | => | x |
// | | | |
// B1 B2 B1 B2 X .----> Y
// N.B. X is going out of the screen
// Start with a Delta of 90deg
// ^ ^ ^
// | x => | |
// | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y,
test_dJointSetUniversalAxisOffset_B2_Minus90deg)
{
CHECK_CLOSE (dJointGetUniversalAngle1 (jId), 0, 1e-4);
CHECK_CLOSE (dJointGetUniversalAngle2 (jId), 0, 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis2 (jId, axis);
dReal ang1 = d2r(REAL(0.0));
dReal ang2 = d2r(REAL(90.0));
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], -ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (ang2, angle2, 1e-4);
dJointSetUniversalAxis2Offset (jId, axis[0], axis[1], axis[2],
ang1, ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (ang2, angle2, 1e-4);
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], 0);
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate 1st body 0.23rad around X (Axis1) then back to original position
//
// ^ ^ ^ ^ Z ^
// | | => \ | |
// | | \ | |
// B1 B2 B1 B2 .-------> Y
// /
// /
// v X (N.B. X is going out of the screen)
//
// Start with a Delta of 0.23rad
// ^ ^ ^ ^
// \ | => | |
// \ | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y,
test_dJointSetUniversalAxis1Offset_B1_0_23rad)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis1 (jId, axis);
dReal ang1 = REAL(0.23);
dReal ang2 = REAL(0.0);
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang1);
dBodySetRotation (bId1, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2],
ang1, ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate 2nd body 0.23rad around Y (Axis2) then back to original position
//
// ^ ^ ^ ^ Z ^ ^ Y (N.B. Y is going in the screen)
// | | => | / | /
// | | | / | /
// B1 B2 B1 B2 .-------> X
//
// Start with a Delta of 0.23rad
// ^ ^ ^ ^
// | / => | |
// | / | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y,
test_dJointSetUniversalAxisOffset_B2_0_23rad)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis2 (jId, axis);
dReal ang1 = REAL(0.0);
dReal ang2 = REAL(0.23);
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointSetUniversalAxis2Offset (jId, axis[0], axis[1], axis[2],
ang1, -ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate 1st body 0.23rad around X axis and 2nd body 0.37rad around Y (Axis2)
// then back to their original position.
// The Axis offsets are set one at a time
//
// ^ ^ ^ ^ Z ^ ^ Y (N.B. Y is going in the screen)
// | | => \ / | /
// | | \ / | /
// B1 B2 B1 B2 .-------> X
//
// Start with a Delta of 0.23rad
// ^ ^ ^ ^
// \ / => | |
// \ / | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Along_X_Axis2_Along_Y,
test_dJointSetUniversalAxisOffset_B1_0_23rad_B2_0_37rad_One_by_One)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis1;
dJointGetUniversalAxis1 (jId, axis1);
dVector3 axis2;
dJointGetUniversalAxis2 (jId, axis2);
dMatrix3 R;
dReal ang1 = REAL(0.23);
dRFromAxisAndAngle (R, axis1[0], axis1[1], axis1[2], ang1);
dBodySetRotation (bId1, R);
dReal ang2 = REAL(0.37);
dRFromAxisAndAngle (R, axis2[0], axis2[1], axis2[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dJointSetUniversalAxis1Offset (jId, axis1[0], axis1[1], axis1[2],
ang1, -ang2 );
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dJointGetUniversalAxis1 (jId, axis1);
dJointGetUniversalAxis2 (jId, axis2);
dRFromAxisAndAngle (R, axis2[0], axis2[1], axis2[2], ang2);
dBodySetRotation (bId2, R);
dJointSetUniversalAxis2Offset (jId, axis2[0], axis2[1], axis2[2],
ang1, -ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId1, R);
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// The 2 bodies are positioned at (0, 0, 0) with no rotation
// The joint is an Universal Joint.
// Axis in the inverse direction of the X axis
// Anchor at (0, 0, 0)
// ^Y
// |
// |
// |
// |
// |
// Z <---- x (X going out of the page)
struct Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Inverse_of_X
{
Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Inverse_of_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreateUniversal (wId, 0);
joint = (dxJointUniversal*) jId;
dJointAttach (jId, bId1, bId2);
dJointSetUniversalAnchor (jId, 0, 0, 0);
axis[0] = -1;
axis[1] = 0;
axis[2] = 0;
dJointSetUniversalAxis1(jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Inverse_of_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dBodyID bId2;
dJointID jId;
dxJointUniversal* joint;
dVector3 axis;
};
// No offset when setting the Axis1 offset
// x is a Symbol for lines pointing into the screen
// . is a Symbol for lines pointing out of the screen
//
// In 2D In 3D
// ^ ^ ^ ^ Z ^ ^ Y
// | | => | | | /
// | | | | | /
// B1 B2 B1 B2 .-------> X <-- Axis1
//
// Start with a Delta of 90deg
// ^ ^ ^ ^
// | | => | |
// | | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Inverse_of_X,
test_dJointSetUniversalAxis1Offset_No_Offset_Axis1_Inverse_of_X)
{
CHECK_CLOSE (dJointGetUniversalAngle1 (jId), 0, 1e-4);
CHECK_CLOSE (dJointGetUniversalAngle2 (jId), 0, 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis1 (jId, axis);
dReal ang1 = REAL(0.0);
dReal ang2 = REAL(0.0);
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang1);
dBodySetRotation (bId1, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2],
ang1, ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate 1st body 90deg around axis1 then back to original position
// x is a Symbol for lines pointing into the screen
// . is a Symbol for lines pointing out of the screen
//
// In 2D In 3D
// ^ ^ ^ Z ^ ^ Y
// | | => x | | /
// | | | | /
// B1 B2 B1 B2 .-------> X <-- Axis1
//
// Start with a Delta of 90deg
// ^ ^ ^
// x | => | |
// | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Inverse_of_X,
test_dJointSetUniversalAxis1Offset_B1_90Deg_Axis1_Inverse_of_X)
{
CHECK_CLOSE (dJointGetUniversalAngle1 (jId), 0, 1e-4);
CHECK_CLOSE (dJointGetUniversalAngle2 (jId), 0, 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis1 (jId, axis);
dReal ang1 = d2r(90);
dReal ang2 = REAL(0.0);
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang1);
dBodySetRotation (bId1, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2],
ang1, ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// No offset when setting the Axis 2 offset
// x is a Symbol for lines pointing into the screen
// . is a Symbol for lines pointing out of the screen
//
// In 2D In 3D
// ^ ^ ^ ^ Z ^ ^ Y ^ Axis2
// | | => | | | / /
// | | | | | / /
// B1 B2 B1 B2 . -------> <-- Axis1
//
// Start with a Delta of 90deg
// ^ ^ ^ ^
// | | => | |
// | | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Inverse_of_X,
test_dJointSetUniversalAxis2Offset_No_Offset_Axis2_Inverse_of_X)
{
CHECK_CLOSE (dJointGetUniversalAngle1 (jId), 0, 1e-4);
CHECK_CLOSE (dJointGetUniversalAngle2 (jId), 0, 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis2 (jId, axis);
dReal ang1 = d2r(REAL(0.0));
dReal ang2 = d2r(REAL(0.0));
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointSetUniversalAxis2Offset (jId, axis[0], axis[1], axis[2],
ang1, -ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate 2nd body 90deg around axis2 then back to original position
//
// In 2D In 3D
// ^ ^ ^ Z ^ ^ Y ^ Axis2
// | | => | --> | / /
// | | | | / /
// B1 B2 B1 B2 . -------> <-- Axis1
//
// Start with a Delta of 90deg
// ^ ^ ^
// | <--- => | |
// | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Inverse_of_X,
test_dJointSetUniversalAxisOffset_B2_90Deg)
{
CHECK_CLOSE (dJointGetUniversalAngle1 (jId), 0, 1e-4);
CHECK_CLOSE (dJointGetUniversalAngle2 (jId), 0, 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis2 (jId, axis);
dReal ang1 = d2r(REAL(0.0));
dReal ang2 = d2r(REAL(90.0));
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointSetUniversalAxis2Offset (jId, axis[0], axis[1], axis[2],
ang1, -ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate 2nd body -90deg around axis2 then back to original position
//
// ^ ^ ^
// | | => | --->
// | | |
// B1 B2 B1 B2
//
// Start with a Delta of 90deg
// ^ ^ ^
// | ---> => | |
// | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Inverse_of_X,
test_dJointSetUniversalAxis1Offset_B2_Minus90Deg)
{
CHECK_CLOSE (dJointGetUniversalAngle1 (jId), 0, 1e-4);
CHECK_CLOSE (dJointGetUniversalAngle2 (jId), 0, 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis2 (jId, axis);
dReal ang1 = d2r(0.0);
dReal ang2 = d2r(REAL(-90.0));
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dJointGetUniversalAxis1 (jId, axis);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2],
ang1, -ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate 1st body 0.23rad around X then back to original position
//
// ^ ^ ^ ^
// | | => \ |
// | | \ |
// B1 B2 B1 B2
//
// Start with a Delta of 0.23rad
// ^ ^ ^ ^
// \ | => | |
// \ | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Inverse_of_X,
test_dJointSetUniversalAxis1Offset_B1_0_23rad)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis1 (jId, axis);
dReal ang1 = REAL(0.23);
dReal ang2 = REAL(0.0);
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang1);
dBodySetRotation (bId1, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2], ang1, ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// Rotate 2nd body -0.23rad around Z then back to original position
//
// ^ ^ ^ ^
// | | => / |
// | | / |
// B1 B2 B1 B2
//
// Start with a Delta of 0.23rad
// ^ ^ ^ ^
// / | => | |
// / | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_At_Zero_Axis1_Inverse_of_X,
test_dJointSetUniversalAxisOffset_B1_Minus0_23rad)
{
CHECK_CLOSE (dJointGetUniversalAngle1 (jId), 0, 1e-4);
dMatrix3 R;
dRFromAxisAndAngle (R, 1, 0, 0, -REAL(0.23));
dBodySetRotation (bId1, R);
CHECK_CLOSE (REAL(0.23), dJointGetUniversalAngle1 (jId), 1e-4);
dVector3 axis;
dJointGetUniversalAxis1 (jId, axis);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2], REAL(0.23), 0);
CHECK_CLOSE (REAL(0.23), dJointGetUniversalAngle1 (jId), 1e-4);
dRFromAxisAndAngle (R, 1, 0, 0, 0);
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
}
// Rotate the body by 90deg around X then back to original position.
// The body is attached at the second position of the joint:
// dJointAttach(jId, 0, bId);
//
// ^
// | => <---
// |
// B1 B1
//
// Start with a Delta of 90deg
// ^
// <--- => |
// |
// B1 B1
TEST_FIXTURE (Fixture_dxJointUniversal_B1_At_Zero_Default_Axes,
test_dJointSetUniversalAxisOffset_1Body_B1_90Deg)
{
CHECK_CLOSE (dJointGetUniversalAngle1 (jId), 0, 1e-4);
dMatrix3 R;
dRFromAxisAndAngle (R, 1, 0, 0, M_PI/2.0);
dBodySetRotation (bId1, R);
CHECK_CLOSE (M_PI/2.0, dJointGetUniversalAngle1 (jId), 1e-4);
dVector3 axis;
dJointGetUniversalAxis1 (jId, axis);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2], M_PI/2.0, 0);
CHECK_CLOSE (M_PI/2.0, dJointGetUniversalAngle1 (jId), 1e-4);
dRFromAxisAndAngle (R, 1, 0, 0, 0);
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
}
// Rotate the body by -0.23rad around X then back to original position.
// The body is attached at the second position of the joint:
// dJointAttach(jId, 0, bId);
//
// ^ ^
// | => /
// | /
// B1 B1
//
// Start with a Delta of -0.23rad
// ^ ^
// / => |
// / |
// B1 B1
TEST_FIXTURE (Fixture_dxJointUniversal_B1_At_Zero_Default_Axes,
test_dJointSetUniversalAxisOffset_1Body_B1_Minus0_23rad)
{
CHECK_CLOSE (dJointGetUniversalAngle1 (jId), 0, 1e-4);
dMatrix3 R;
dRFromAxisAndAngle (R, 1, 0, 0, -REAL(0.23));
dBodySetRotation (bId1, R);
CHECK_CLOSE (-REAL(0.23), dJointGetUniversalAngle1 (jId), 1e-4);
dVector3 axis;
dJointGetUniversalAxis1 (jId, axis);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2], -REAL(0.23), 0);
CHECK_CLOSE (-REAL(0.23), dJointGetUniversalAngle1 (jId), 1e-4);
dRFromAxisAndAngle (R, 1, 0, 0, 0);
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
}
// Only one body body1 at (0,0,0)
// The joint is an Universal Joint.
// Axis the inverse of the X axis
// Anchor at (0, 0, 0)
//
// ^Y
// |
// |
// |
// |
// |
// Z <-- X
struct Fixture_dxJointUniversal_B1_At_Zero_Axis_Inverse_of_X
{
Fixture_dxJointUniversal_B1_At_Zero_Axis_Inverse_of_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
jId = dJointCreateUniversal (wId, 0);
joint = (dxJointUniversal*) jId;
dJointAttach (jId, bId1, NULL);
dJointSetUniversalAnchor (jId, 0, 0, 0);
axis[0] = -1;
axis[1] = 0;
axis[2] = 0;
dJointSetUniversalAxis1(jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointUniversal_B1_At_Zero_Axis_Inverse_of_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dJointID jId;
dxJointUniversal* joint;
dVector3 axis;
};
// Rotate B1 by 90deg around X then back to original position
//
// ^
// | => <---
// |
// B1 B1
//
// Start with a Delta of 90deg
// ^
// <--- => |
// |
// B1 B1
TEST_FIXTURE (Fixture_dxJointUniversal_B1_At_Zero_Axis_Inverse_of_X,
test_dJointSetUniversalAxisOffset_1Body_B1_90Deg)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
dVector3 axis;
dJointGetUniversalAxis1(jId, axis);
dReal ang1 = d2r(REAL(90.0));
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang1);
dBodySetRotation (bId1, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2], ang1, 0);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
}
// Rotate B1 by -0.23rad around X then back to original position
//
// ^ ^
// | => /
// | /
// B1 B1
//
// Start with a Delta of -0.23rad
// ^ ^
// / => |
// / |
// B1 B1
TEST_FIXTURE (Fixture_dxJointUniversal_B1_At_Zero_Axis_Inverse_of_X,
test_dJointSetUniversalAxisOffset_1Body_B1_Minus0_23rad)
{
CHECK_CLOSE (dJointGetUniversalAngle1 (jId), 0, 1e-4);
dMatrix3 R;
dRFromAxisAndAngle (R, 1, 0, 0, -REAL(0.23));
dBodySetRotation (bId1, R);
CHECK_CLOSE (REAL(0.23), dJointGetUniversalAngle1 (jId), 1e-4);
dVector3 axis;
dJointGetUniversalAxis1 (jId, axis);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2], REAL(0.23), 0);
CHECK_CLOSE (REAL(0.23), dJointGetUniversalAngle1 (jId), 1e-4);
dRFromAxisAndAngle (R, 1, 0, 0, 0);
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
}
// Rotate B2 by 90deg around X then back to original position
//
// ^
// | => <---
// |
// B2 B2
//
// Start with a Delta of 90deg
// ^
// <--- => |
// |
// B2 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B2_At_Zero_Default_Axes,
test_dJointSetUniversalAxisOffset_1Body_B2_90Deg)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dVector3 axis;
dJointGetUniversalAxis2 (jId, axis);
dReal ang2 = d2r(REAL(90.0));
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointSetUniversalAxis2Offset (jId, axis[0], axis[1], axis[2], 0, -ang2);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
}
// Rotate B2 by -0.23rad around Y then back to original position
//
// ^ ^
// | => /
// | /
// B2 B2
//
// Start with an offset of -0.23rad
// ^ ^
// / => |
// / |
// B2 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B2_At_Zero_Default_Axes,
test_dJointSetUniversalAxis2Offset_1Body_B2_Minus0_23rad)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis2 (jId, axis);
dReal ang1 = 0;
dReal ang2 = REAL(-0.23);
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], ang2);
dBodySetRotation (bId2, R);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (ang1, angle1, 1e-4);
CHECK_CLOSE (-ang2, angle2, 1e-4);
dJointSetUniversalAxis2Offset (jId, axis[0], axis[1], axis[2],
ang1, -ang2);
CHECK_CLOSE (ang1, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (-ang2, dJointGetUniversalAngle2 (jId), 1e-4);
dRSetIdentity(R); // Set the rotation of the body to be zero
dBodySetRotation (bId2, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
// The 2 bodies are positioned at (0,0,0) and (0,0,0)
// The bodies have no rotation.
// The joint is a Universal Joint
// The axis of the joint are at random (Still at 90deg w.r.t each other)
// Anchor at (0, 0, 0)
struct Fixture_dxJointUniversal_B1_and_B2_Axis_Random
{
Fixture_dxJointUniversal_B1_and_B2_Axis_Random()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, -1, -2, -3);
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 11, 22, 33);
jId = dJointCreateUniversal (wId, 0);
dJointAttach (jId, bId1, bId2);
dVector3 axis1;
axis1[0] = REAL(0.53);
axis1[1] = -REAL(0.71);
axis1[2] = REAL(0.43);
dNormalize3(axis1);
dVector3 axis;
axis[0] = REAL(1.2);
axis[1] = REAL(0.87);
axis[2] = -REAL(0.33);
dVector3 axis2;
dCalcVectorCross3(axis2, axis1, axis);
dJointSetUniversalAxis1(jId, axis1[0], axis1[1], axis1[2]);
dJointSetUniversalAxis2(jId, axis2[0], axis2[1], axis2[2]);
}
~Fixture_dxJointUniversal_B1_and_B2_Axis_Random()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dBodyID bId2;
dJointID jId;
};
// Rotate first body 90deg around Axis1 then back to original position
//
// ^ ^ ^ Z ^
// | | => <--- | |
// | | | |
// B1 B2 B1 B2 X .----->Y
// N.B. X is going out of the screen
// Set Axis1 with an Offset of 90deg
// ^ ^ ^
// <--- | => | |
// | | |
// B1 B2 B1 B2
TEST_FIXTURE (Fixture_dxJointUniversal_B1_and_B2_Axis_Random,
test_dJointSetUniversalAxisOffset_B1_90deg_Axis_Random)
{
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dReal angle1, angle2;
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dVector3 axis;
dJointGetUniversalAxis1 (jId, axis);
dReal angle = d2r(90);
dMatrix3 R;
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], angle);
dBodySetRotation (bId1, R);
CHECK_CLOSE (angle, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (angle, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dJointSetUniversalAxis1Offset (jId, axis[0], axis[1], axis[2], angle, 0);
CHECK_CLOSE (angle, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (angle, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2], 0);
dBodySetRotation (bId1, R);
CHECK_CLOSE (0, dJointGetUniversalAngle1 (jId), 1e-4);
CHECK_CLOSE (0, dJointGetUniversalAngle2 (jId), 1e-4);
dJointGetUniversalAngles(jId, &angle1, &angle2);
CHECK_CLOSE (0, angle1, 1e-4);
CHECK_CLOSE (0, angle2, 1e-4);
}
} // End of SUITE TestdxJointUniversal